MULTI-LAYER MICROFLUIDIC DEVICES FOR AMINO ACID ANALYSIS: THE MARS ORGANIC ANALYZER

http://astrobiology.berkeley.edu

Alison M. Skelley
University of California, Berkeley

MSB 2005
Feb 14th 2005
Astrobiology on Mars

- Recent MER results:
 - Sedimentary and mineralogical evidence of past liquid water
 - Jarosite is key evidence

- What do we look for?
 - Broad classes of molecules including organic sugars and bases (i.e. nucleobases), amines and amino acids
 - Amino acid homochirality necessary for life
Amino Acid Analysis

Fluorescamine (FA) Derivatized amino acid (absorption max @ 390 nm)

Composition

Chirality
You are here
Microfabricated device contains two 21-cm long separation channels

Microfabricated channels formed by bonding 2 glass layers together
Microfabricated Valves

Microfabricated Pumps

- 14 distinct pumps (42 valves) operated by 3 pneumatic lines
- Input / output valves are 500 x 700 \(\text{m} \)
- Diaphragm valves range from 1.5 to 3 mm (large axis)
- Flow rates from 1 nL/s up to 2 \(\text{L} / \text{s} \) are achievable
Multilayer Devices

• 4-layer device for microfluidic sample handling and CE separations

Portable CE Instrument: Mars Organic Analyzer (MOA)

A.M. Skelley et al. (2005) PNAS 102, 1041-1046.
Lab-Based Characterization of MOA

• Microfabricated CE analyzer has demonstrated pM and parts-per-trillion sensitivity

A.M. Skelley et al. (2005) PNAS 102, 1041-1046.
Lab-Based Analysis of Atacama Samples using MOA
• The MOA successfully analyzed amino acids from soil samples at the dry limit of microbial life on Earth

Field Testing of MOD-MOA on Mars-Like Samples
Field Testing of MOD-MOA on Mars-Like Samples

- MOD-MOA combination successfully analyzed amino acids in the field
- Significant amino acid biomarkers are found in acidic jarosite soils

A.M. Skelley et al. (2005) PNAS 102, 1041-1046.
MAP: The Mars Astrobiology Probe

Sample receiving system

Electronics box

LIF detector
MOD oven

_CE system and LIF
Development of Automated, Multi-Sample Instrument

- Device is fixed on instrument prior to flight
- Scanning objective locates channel prior to analysis

- 8 separation channels
- 2-stage bus
- 32 pneumatic lines
The Multi-Channel Mars Organic Analyzer (McMOA)

- Aluminum Case: 10” x 12” x 4”
- Chip and Chip Manifold
- 32 Pneumatic Lines
- Chip Cooling Platform
- Optical Components
- Stepper Motor
Summary and Future Applications

• Demonstrated complex microfluidic systems, CE multilayer device

• Developed portable instrumentation

• The fully integrated MAP is being developed for the Pasteur payload on the 2009 ExoMars (ESA) mission

• Applicable for future astrobiology missions – currently investigating analysis of other classes of biomolecules

• Devices and instrumentation developed are applicable and currently being used for forensics, sequencing, pathogen detection
Acknowledgements

Mathies Lab, UC Berkeley
Prof. Richard Mathies
Dr. James R. Scherer
Benjamin Haldeman
Will Grover
Robin Ivester

MAP Team Members:
Dr. Frank Grunthaner, JPL
Prof. Jeffrey Bada and Andrew Aubrey, Scripps Institution of Oceanography
Prof. Pascale Ehrenfreund, Leiden Observatory

Funding: NASA
NSERC

Henry Chan, UC Berkeley Electronics Shop
UC Berkeley Machine Shop
UC Berkeley Microfabrication Lab

For more info:
http://astrobiology.berkeley.edu